An Improvement of Shotgun Proteomics Analysis by Adding Next-Generation Sequencing Transcriptome Data in Orange

نویسندگان

  • Jiaping Song
  • Renjie Sun
  • Dazhi Li
  • Fengji Tan
  • Xin Li
  • Pingping Jiang
  • Xinjie Huang
  • Liang Lin
  • Ziniu Deng
  • Yong Zhang
چکیده

BACKGROUND Shotgun proteomics data analysis usually relies on database search. Because commonly employed protein sequence databases of most species do not contain sufficient protein information, the application of shotgun proteomics to the research of protein sequence profile remains a big challenge, especially to the species whose genome has not been sequenced yet. METHODOLOGY/PRINCIPAL FINDINGS In this paper, we present a workflow with integrated database to partly address this problem. First, we downloaded the homologous species database. Next, we identified the transcriptome of the sample, created a protein sequence database based on the transcriptome data, and integtrated it with homologous species database. Lastly, we developed a workflow for identifying peptides simultaneously from shotgun proteomics data. CONCLUSIONS/SIGNIFICANCE We used datasets from orange leaves samples to demonstrate our workflow. The results showed that the integrated database had great advantage on orange shotgun proteomics data analysis compared to the homologous species database, an 18.5% increase in number of proteins identification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Single-cell Transcriptome Study as Big Data

The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After...

متن کامل

RNA-Seq analysis of two brain regions vulnerable to Alzheimer's disease

Background Alzheimer’s disease (AD), one of the most devastating neurodegenerative diseases, does not affect different brain regions equally. The temporal and frontal lobes are among the brain regions most affected in AD. As the transcriptomic profile of neurons in a certain brain region largely affects their response to pathological conditions like AD, comparative transcriptomic analysis of th...

متن کامل

Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.

Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates...

متن کامل

Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial.

Genome-wide analyses and high-throughput screening was long reserved for biomedical applications and genetic model organisms. With the rapid development of massively parallel sequencing nanotechnology (or next-generation sequencing) and simultaneous maturation of bioinformatic tools, this situation has dramatically changed. Genome-wide thinking is forging its way into disciplines like evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012